The effect of the additivity assumption on time and frequency domain wiener filtering for speech enhancement

نویسندگان

  • Kamil K. Wójcicki
  • Stephen So
  • Kuldip K. Paliwal
چکیده

In this paper, we investigate the validity of the common assumption made in Wiener filtering that the clean speech and noise signals are uncorrelated under short-time analysis typically used for speech enhancement. In order to achieve this we have performed speech enhancement experiments, where speech corrupted by additive white Gaussian noise is enhanced by a Wiener filter designed in the time as well as the frequency domains. Results of oracle-style experiments confirm that the inclusion of the additivity assumption in Wiener filtering results in negligible degradation of enhanced speech quality. Informal listening tests show that the background noise resulting from time domain enhancement to be more tolerable than the background noise resulting from frequency domain framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

A Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement

A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...

متن کامل

Application of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation

Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...

متن کامل

Optimized Wavelet-based Speech Enhancement for Speech Recognition in Noisy and Reverberant Conditions

We present an improved speech enhancement method based on Wiener filtering in the wavelet domain for automatic speech recognition (ASR). The wavelet coefficients that are contaminated by the effects of late reflection and background noise are filtered using a Wiener gain. We optimize the wavelet parameters for speech, background noise and late reflection to achieve a better estimate of the Wien...

متن کامل

Speech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering

This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007